Printed	l Page	ge:-03 Subject	ct Code:-	ACSB	S0303				
	5	Roll. N							
N	OIDA	A INSTITUTE OF ENGINEERING AND T	ECHNOI	LOGY, (GREA	TER N	1OID		
	(An Autonomous Institute Affiliated to AKTU, Lucknow)								
B.Tech									
		SEM: III - THEORY EXAMINATIO Subject: Computer Organization	•)				
Time	e: 3 He	· · · · · · · · · · · · · · · · · · ·	II & AICII	ntecture		Max.	Mark	s: 100	
		structions:				1,1611.	1,14111	5. 100	
IMP: V	erify	y that you have received the question paper w	ith the co	orrect co	urse, o	code, b	ranch	etc.	
		estion paper comprises of three Sections -A, B	, & C. It	consists	of Mu	ıltiple (Choice	е	
		(MCQ's) & Subjective type questions.	, ,		. ,				
		n marks for each question are indicated on rig	_		each (questio	n.		
		e your answers with neat sketches wherever ne suitable data if necessary.	ecessary.						
		ly, write the answers in sequential order.							
_		should be left blank. Any written material after	er a blan	k sheet	will no	ot be			
evalua	ted/ch	hecked.							
SECT	ION-	<u>-A</u>						20	
1. Atte	mpt a	all parts:-		_ \					
1-a.	Br	Brain of computer is (CO1)						1	
	(a)	Control unit							
	(b)	Arithmetic and Logic unit							
	(c)	Central Processing Unit							
	(d)	Memory							
1-b.	` ′	The smallest unit of data in computer is		. (0	CO1)			1	
1 0.	(a)	Byte		(,01)			•	
	(a) (b)	Nibble							
	(c)	Bit							
	(d)	KB							
1 0								1	
1-c.		EEE stands for (CO2)						1	
	(a)	Instantaneous Election Electrical Engineering	ng						
	(b)	Institute of Emerging Electrical Engineers							
	(c)	Institute of Emerging Electronic Engineers							
	(d)	Institute of Electrical and electronics engine							
1-d.		The most efficient method followed by comput	ters to m	ultiply t	wo un	signed		1	
		umbers is (CO2)							
	(a)	Booth algorithm							
	(b)	Bit pair recording of multipliers							

	(c)	Restoring algorithm	
	(d)	Non restoring algorithm	
1-e.	T	he BOOT sector files of the system are stored in (CO3)	1
	(a)	harddisk	
	(b)	ROM	
	(c)	RAM	
	(d)	Fast solid state chips in the motherboard	
1-f.	_	is the formula for Hit Ratio. (CO3)	1
	(a)	Hit/(Hit + Miss)	
	(b)	Miss/(Hit + Miss)	
	(c)	(Hit + Miss)/Miss	
	(d)	(Hit + Miss)/Hit	
1-g.	T	he full form of UART is (CO4)	1
	(a)	universal asynchronous receiver transmitter	
	(b)	unique asynchronous receiver transmitter	
	(c)	universal address receiver transmitter	
	(d)	Its architectural design	
1-h.	A		1
		o do. (CO4)	
	(a)	Control	
	(b)	Status	
	(c)	Data output	
	(d)	Data Input	
1-i.	T	he pipelining process is also called as(CO5)]
	(a)	Superscalar operation	
	(b)	Assembly line operation	
	(c)	Von Neumann cycle	
	(d)	None of the mentioned	
1-j.	V	That is the Optimal page – replacement algorithm? (CO5)]
	(a)	Replace the page that has not been used for a long time	
	(b)	Replace the page that has been used for a long time	
	(c)	Replace the page that will not be used for a long time	
	(d)	None of the mentioned	
2. Att	empt a	all parts:-	
2.a.	V	That do you understand by the term Computer Architecture? (CO1)	2
2.b.	E	xplain three main features of ALU. (CO2)	2
2.c.	W	That are volatile and non-volatile memories? (CO3)	2
2.d.	V	hat is DMA? (CO4)	

2.e.	What is parallel processing? (CO5)	2
SECTIO	<u>ON-B</u>	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Draw the basic functional units of a computer. (CO1)	6
3-b.	Explain stack memory organization with example. (CO1)	6
3-c.	Explain the IEEE 754 floating point representation for floating point numbers with examples. (CO2)	6
3-d.	Draw and explain Carry Look Ahead adder with diagram. (CO2)	6
3.e.	What is SRAM and DRAM? (CO3)	6
3.f.	Explain difference between vectored and non- vectored interrupts. (CO4)	6
3.g.	Design and explain the concept of Pipelining with the help of suitable example.(CO5)	6
SECTIO	<u>ON-C</u>	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	What is System Bus? Draw its architecture and explain the different types of Buses with their functions. (CO1)	10
4-b.	What are logic gates? Explain the different types of logic gates with truth table. (CO1)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	Explain booth's algorithm with the help of flow chart. (CO2)	10
5-b.	Sketch the flow diagram of division algorithm with suitable example. (CO2)	10
6. Answ	er any <u>one</u> of the following:-	
6-a.	Differentiate between hardwired and micro-programmed control unit. (CO3)	10
6-b.	Explain memory hierarchy in details with the help of diagram. (CO3)	10
7. Answ	er any one of the following:-	
7-a.	What is I/O peripheral devices? Draw and explain Interrupt Initiated I/O process. (CO4)	10
7-b.	Draw the block diagram of DMA controller. (CO4)	10
8. Answ	er any <u>one</u> of the following:-	
8-a.	What is Parallel processing? Also differentiate between pipelining and parallel processing. (CO5)	10
8-b.	Explain various pipelining conflicts. Write short notes on Throughput and speedup. (CO5)	10